Chromatinization of escherichia coli with archaeal histones

24Citations
Citations of this article
110Readers
Mendeley users who have this article in their library.

Abstract

Nucleosomes restrict DNA accessibility throughout eukaryotic genomes, with repercussions for replication, transcription, and other DNA-templated processes. How this globally restrictive organization emerged during evolution remains poorly understood. Here, to better understand the challenges associated with establishing globally restrictive chromatin, we express histones in a naive system that has not evolved to deal with nucleosomal structures: Escherichia coli. We find that histone proteins from the archaeon Methanothermus fervidus assemble on the E. coli chromosome in vivo and protect DNA from micrococcal nuclease digestion, allowing us to map binding footprints genome-wide. We show that higher nucleosome occupancy at promoters is associated with lower transcript levels, consistent with local repressive effects. Surprisingly, however, this sudden enforced chromatinization has only mild repercussions for growth unless cells experience topological stress. Our results suggest that histones can become established as ubiquitous chromatin proteins without interfering critically with key DNA-templated processes.

Cite

CITATION STYLE

APA

Rojec, M., Hocher, A., Stevens, K. M., Merkenschlager, M., & Warnecke, T. (2019). Chromatinization of escherichia coli with archaeal histones. ELife, 8. https://doi.org/10.7554/eLife.49038

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free