Selection pressures leading to extreme, female-biased sexual size dimorphism (SSD) in spiders continue to be debated. It has been proposed that males of sexually size dimorphic spiders could be small because gravity constrains adult agility (locomotor abilities). Accordingly, small males should achieve higher vertical climbing speeds and should be more prone to bridge. The curvilinear model of the gravity hypothesis predicts a negative relationship between vertical climbing speed and male body size only over a threshold of 7.6 mm, 42.5 mg. Because males of most species with extreme SSD fall well below this threshold, the relationship between male size and agility at this scale remains vague. Here, we tested three hypotheses on how male size, mass and age (after maturation) relate to vertical climbing and bridging ability in Nephilingis cruentata, a highly sexually dimorphic orb-weaver with males well below the size threshold. We placed males of different sizes and adult ages in a vertical platform and recorded their climbing speeds. Contrary to the original study testing male bridging ability as binary variable, we measured the duration of the crossing of the bridging thread, as well as its sagging distance. Male body size and mass positively related to the vertical climbing speed and to the distance of the sagging thread during bridging, but had no influence on the bridging duration. The detected positive correlation between male size/mass and vertical climbing speed goes against our first prediction, that small males would have vertical climbing advantage in Nephilingis cruentata, but agrees with the curvilinear model. Against our second prediction, small males were not faster during bridging. Finally, in agreement with our third prediction, threads sagged more in heavier males. These results suggest that small male size confers no agility advantages in Nephilingis cruentata.
CITATION STYLE
Quiñones-Lebrón, S. G., Gregorič, M., Kuntner, M., & Kralj-Fišer, S. (2019). Small size does not confer male agility advantages in a sexually-size dimorphic spider. PLoS ONE, 14(5). https://doi.org/10.1371/journal.pone.0216036
Mendeley helps you to discover research relevant for your work.