Combining heterogeneous data sources for accurate functional annotation of proteins

47Citations
Citations of this article
66Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Combining heterogeneous sources of data is essential for accurate prediction of protein function. The task is complicated by the fact that while sequence-based features can be readily compared across species, most other data are species-specific. In this paper, we present a multi-view extension to GOstruct, a structured-output framework for function annotation of proteins. The extended framework can learn from disparate data sources, with each data source provided to the framework in the form of a kernel. Our empirical results demonstrate that the multi-view framework is able to utilize all available information, yielding better performance than sequence-based models trained across species and models trained from collections of data within a given species. This version of GOstruct participated in the recent Critical Assessment of Functional Annotations (CAFA) challenge; since then we have significantly improved the natural language processing component of the method, which now provides performance that is on par with that provided by sequence information. The GOstruct framework is available for download at http://strut.sourceforge.net. © 2013 Sokolov etal.; licensee BioMed Central Ltd.

Cite

CITATION STYLE

APA

Sokolov, A., Funk, C., Graim, K., Verspoor, K., & Ben-Hur, A. (2013). Combining heterogeneous data sources for accurate functional annotation of proteins. BMC Bioinformatics, 14(SUPPL.3). https://doi.org/10.1186/1471-2105-14-S3-S10

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free