Near surface air temperature (Ta) is one of the key input parameters in land surface models and hydrological models as it affects most biogeophysical and biogeochemical processes of the earth surface system. For distributed hydrological modeling over glacierized basins, obtaining high resolution Ta forcing is one of the major challenges. In this study, we proposed a new high resolution daily Ta estimation scheme under both clear and cloudy sky conditions through integrating the moderate-resolution imaging spectroradiometer (MODIS) land surface temperature (LST) and China Meteorological Administration (CMA) land data assimilation system (CLDAS) reanalyzed daily Ta. Spatio-temporal continuous MODIS LST was reconstructed through the data interpolating empirical orthogonal functions (DINEOF) method. Multi-variable regression models were developed at CLDAS scale and then used to estimate Ta at MODIS scale. The new Ta estimation scheme was tested over the Langtang Valley, Nepal as a demonstrating case study. Observations from two automatic weather stations at Kyanging and Yala located in the Langtang Valley from 2012 to 2014 were used to validate the accuracy of Ta estimation. The RMSEs are 2.05, 1.88, and 3.63 K, and the biases are 0.42, -0.68 and -2.86 K for daily maximum, mean and minimum Ta, respectively, at the Kyanging station. At the Yala station, the RMSE values are 4.53, 2.68 and 2.36 K, and biases are 4.03, 1.96 and -0.35 K for the estimated daily maximum, mean and minimum Ta, respectively. Moreover, the proposed scheme can produce reasonable spatial distribution pattern of Ta at the Langtang Valley. Our results show the proposed Ta estimation scheme is promising for integration with distributed hydrological model for glacier melting simulation over glacierized basins.
CITATION STYLE
Zhou, W., Peng, B., Shi, J., Wang, T., Dhital, Y. P., Yao, R., … Zhao, R. (2017). Estimating high resolution daily air temperature based on remote sensing products and climate reanalysis datasets over glacierized basins: A case study in the Langtang Valley, Nepal. Remote Sensing, 9(9). https://doi.org/10.3390/rs9090959
Mendeley helps you to discover research relevant for your work.