High-frequency ultrasonic backscatter coefficient analysis considering microscopic acoustic and histopathological properties of lymphedema dermis

11Citations
Citations of this article
16Readers
Mendeley users who have this article in their library.

Abstract

We studied the effect of acoustic and histopathological features on the ultrasound backscatter properties of lymphedema (LE) dermis. Experimental effective scatterer diameter (ESD) and effective acoustic concentration (EAC) were calculated from a backscatter coefficient using the reflector method for backscattered signals. Predicted parameters were also analyzed using two-dimensional Fourier transforms of the acoustic impedance and histopathological distributions. Backscattered signals were obtained from ex vivo human tissues negative (n = 5) and positive (n = 5) for LE using a laboratory-made scanner with a 14 MHz transducer. Acoustic impedance was analyzed using scanning acoustic microscopy with a 68 MHz transducer, and histopathological features, such as fiber number density and thickness, were assessed with digital histopathology. Both experimental and predicted EACs showed differences (in the range 25.7%-102%) between negative and positive LE. Although the mean and standard deviation of the acoustic impedance were related to the difference in EACs, the ESD and histopathological features were the same regardless of the presence of LE.

Cite

CITATION STYLE

APA

Omura, M., Yoshida, K., Akita, S., & Yamaguchi, T. (2020). High-frequency ultrasonic backscatter coefficient analysis considering microscopic acoustic and histopathological properties of lymphedema dermis. Japanese Journal of Applied Physics, 59. https://doi.org/10.35848/1347-4065/ab86da

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free