Coronary calcification segmentation in intravascular OCT images using deep learning: application to calcification scoring

  • Gharaibeh Y
  • Prabhu D
  • Kolluru C
  • et al.
50Citations
Citations of this article
32Readers
Mendeley users who have this article in their library.

Abstract

© 2019 The Authors. Major calcifications are of great concern when performing percutaneous coronary interventions because they inhibit proper stent deployment. We created a comprehensive software to segment calcifications in intravascular optical coherence tomography (IVOCT) images and to calculate their impact using the stent-deployment calcification score, as reported by Fujino et al. We segmented the vascular lumen and calcifications using the pretrained SegNet, convolutional neural network, which was refined for our task. We cleaned segmentation results using conditional random field processing. We evaluated the method on manually annotated IVOCT volumes of interest (VOIs) without lesions and with calcifications, lipidous, or mixed lesions. The dataset included 48 VOIs taken from 34 clinical pullbacks, giving a total of 2640 in vivo images. Annotations were determined from consensus between two expert analysts. Keeping VOIs intact, we performed 10-fold cross-validation over all data. Following segmentation noise cleaning, we obtained sensitivities of 0.85 ± 0.04, 0.99 ± 0.01, and 0.97 ± 0.01 for calcified, lumen, and other tissue classes, respectively. From segmented regions, we automatically determined calcification depth, angle, and thickness attributes. Bland-Altman analysis suggested strong correlation between manually and automatically obtained lumen and calcification attributes. Agreement between manually and automatically obtained stent-deployment calcification scores was good (four of five lesions gave exact agreement). Results are encouraging and suggest our classification approach could be applied clinically for assessment and treatment planning of coronary calcification lesions.

Cite

CITATION STYLE

APA

Gharaibeh, Y., Prabhu, D. S., Kolluru, C., Lee, J., Zimin, V., Bezerra, H. G., & Wilson, D. L. (2019). Coronary calcification segmentation in intravascular OCT images using deep learning: application to calcification scoring. Journal of Medical Imaging, 6(04), 1. https://doi.org/10.1117/1.jmi.6.4.045002

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free