Electron Leak From the Mitochondrial Electron Transport Chain Complex I at Site IQ Is Crucial for Oxygen Sensing in Rabbit and Human Ductus Arteriosus

4Citations
Citations of this article
9Readers
Mendeley users who have this article in their library.

Abstract

BACKGROUND: As partial pressure of oxygen (pO2) rises with the first breath, the ductus arteriosus (DA) constricts, diverting blood flow to the pulmonary circulation. The DA’s O2 sensor resides within smooth muscle cells. The DA smooth muscle cells’ mitochondrial electron transport chain (ETC) produces reactive oxygen species (ROS) in proportion to oxygen tension, causing vasoconstriction by regulating redox-sensitive ion channels and enzymes. To identify which ETC complex contributes most to DA O2 sensing and determine whether ROS mediate O2 sensing independent of metabolism, we used electron leak suppressors, S1QEL (suppressor of site IQ electron leak) and S3QEL (suppressor of site IIIQo electron leak), which decrease ROS production by inhibiting electron leak from quinone sites IQ and IIIQo, respectively. METHODS AND RESULTS: The effects of S1QEL, S3QEL, and ETC inhibitors (rotenone and antimycin A) on DA tone, mitochondrial metabolism, O2-induced changes in intracellular calcium, and ROS were studied in rabbit DA rings, and human and rabbit DA smooth muscle cells. S1QEL’s effects on DA patency were assessed in rabbit kits, using micro computed tomography. In DA rings, S1QEL, but not S3QEL, reversed O2-induced constriction (P=0.0034) without reducing phenylephrine-induced constriction. S1QEL did not inhibit mitochondrial metabolism or ETC-I activity. In human DA smooth muscle cells, S1QEL and rotenone inhibited O2-induced increases in intracellular calcium (P=0.02 and 0.001, respectively), a surrogate for DA constriction. S1QEL inhibited O2-induced ROS generation (P=0.02). In vivo, S1QEL prevented O2-induced DA closure (P<0.0001). CONCLUSIONS: S1QEL, but not S3QEL, inhibited O2-induced rises in ROS and DA constriction ex vivo and in vivo. DA O2 sensing relies on pO2-dependent changes in electron leak at site IQ in ETC-I, independent of metabolism. S1QEL offers a therapeutic means to maintain DA patency.

Cite

CITATION STYLE

APA

Read, A. D., Bentley, R. E. T., Martin, A. Y., Mewburn, J. D., Alizadeh, E., Wu, D., … Archer, S. L. (2023). Electron Leak From the Mitochondrial Electron Transport Chain Complex I at Site IQ Is Crucial for Oxygen Sensing in Rabbit and Human Ductus Arteriosus. Journal of the American Heart Association, 12(13). https://doi.org/10.1161/JAHA.122.029131

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free