Role of PRY-1/Axin in heterochronic miRNA-mediated seam cell development

8Citations
Citations of this article
22Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Background: Caenorhabditis elegans seam cells serve as a good model to understand how genes and signaling pathways interact to control asymmetric cell fates. The stage-specific pattern of seam cell division is coordinated by a genetic network that includes WNT asymmetry pathway components WRM-1, LIT-1, and POP-1, as well as heterochronic microRNAs (miRNAs) and their downstream targets. Mutations in pry-1, a negative regulator of WNT signaling that belongs to the Axin family, were shown to cause seam cell defects; however, the mechanism of PRY-1 action and its interactions with miRNAs remain unclear. Results: We found that pry-1 mutants in C. elegans exhibit seam cell, cuticle, and alae defects. To examine this further, a miRNA transcriptome analysis was carried out, which showed that let-7 (miR-48, miR-84, miR-241) and lin-4 (lin-4, miR-237) family members were upregulated in the absence of pry-1 function. Similar phenotypes and patterns of miRNA overexpression were also observed in C. briggsae pry-1 mutants, a species that is closely related to C. elegans. RNA interference-mediated silencing of wrm-1 and lit-1 in the C. elegans pry-1 mutants rescued the seam cell defect, whereas pop-1 silencing enhanced the phenotype, suggesting that all three proteins are likely important for PRY-1 function in seam cells. We also found that these miRNAs were overexpressed in pop-1 hypomorphic animals, suggesting that PRY-1 may be required for POP-1-mediated miRNA suppression. Analysis of the let-7 and lin-4-family heterochronic targets, lin-28 and hbl-1, showed that both genes were significantly downregulated in pry-1 mutants, and furthermore, lin-28 silencing reduced the number of seam cells in mutant animals. Conclusions: Our results show that PRY-1 plays a conserved role to maintain normal expression of heterochronic miRNAs in nematodes. Furthermore, we demonstrated that PRY-1 acts upstream of the WNT asymmetry pathway components WRM-1, LIT-1, and POP-1, and miRNA target genes in seam cell development.

Cite

CITATION STYLE

APA

Mallick, A., Ranawade, A., & Gupta, B. P. (2019). Role of PRY-1/Axin in heterochronic miRNA-mediated seam cell development. BMC Developmental Biology, 19(1). https://doi.org/10.1186/s12861-019-0197-5

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free