Layered double hydroxides (LDHs) intercalating with a corrosion inhibitor for slowing down the corrosion of a reinforcing bar has attracted considerable attention. However, achieving high-loading capacity of organic inhibitor in LDH with high efficiency and long-term protection characteristics remains an important challenge. In this work, the CaAl-LDH intercalating with eugenol (EG) was synthesized via a continuous hydrothermal method. The prepared LDHs were characterized by SEM, XRD, UV-vis absorption spectra and TGA. Additionally, the corrosion protection performances of LDH-EG for steel bar were studied in detail via the electrochemical method. The results show that the loading amount of EG in LDHs was about 30% and about 80% EG could be released from LDH-EG within 4 h in SCPs containing 3.5% NaCl. The electrochemical test results show that the Rct value (105~106 Ω · cm2) of steel-mortar incorporated with LDH-EG has increased by 3–4 orders of magnitude compared to the specimen without LDHs (102~103 Ω · cm2) after 16 dry–wet cycles corrosion test. The significantly improved protection capability is mainly derived from two aspects: one is the filling effect of LDH, which can fill the pores of mortar and improve the impermeability; another reason is that the intercalated EG can slowly diffuse out of the inner structure of LDHs in a controllable way and result in a relatively long-term effect of corrosion inhibition.
CITATION STYLE
Liu, A., Gu, H., Geng, Y., Wang, P., Gao, S., & Li, S. (2023). Hydrothermal Synthesis of CaAl-LDH Intercalating with Eugenol and Its Corrosion Protection Performances for Reinforcing Bar. Materials, 16(7). https://doi.org/10.3390/ma16072913
Mendeley helps you to discover research relevant for your work.