The Facet Dependence of CO2 Electroreduction Selectivity on a Pd3Au Bimetallic Catalyst: A DFT Study

5Citations
Citations of this article
6Readers
Mendeley users who have this article in their library.

Abstract

The electrochemical carbon dioxide reduction reaction (CO2RR) has emerged as a promising approach to addressing global energy and environmental challenges. Alloys are of particular importance in these applications due to their unique chemical and physical properties. In this study, the possible mechanism of the C1 products from the electrochemical reduction of CO2 on four different surfaces of Pd3Au alloy bimetallic catalysts is predicted using the density functional theory. The differences in the number of d-band electrons and the charge distribution and morphology of the different surfaces result in differing catalytic activity and selectivity on the same surface. On different surfaces, Pd3Au alloy bimetallic catalysts have different potential limiting steps in CO2RR, resulting in differing selectivity. The Pd3Au (100) surface has a good selectivity for HER, indicating that the increase in the net charge on the surface of the alloy improves the selectivity for HER. The Pd3Au (211) surface, with a step structure, shows a good selectivity for methanol production from CO2RR. In addition, an electronic structure analysis shows that the selectivity of the reactions involved in the conversion of adsorbates is determined by the difference between the center of the d-band on the top of the catalyst, where the reactant and the product are located. The results of this study may provide some theoretical basis for designing and developing more efficient and selective CO2 reduction catalysts.

Cite

CITATION STYLE

APA

Zheng, M., Zhou, X., Wang, Y., Chen, G., & Li, M. (2023). The Facet Dependence of CO2 Electroreduction Selectivity on a Pd3Au Bimetallic Catalyst: A DFT Study. Molecules, 28(7). https://doi.org/10.3390/molecules28073169

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free