Soluble fibrin inhibits monocyte adherence and cytotoxicity against tumor cells: Implications for cancer metastasis

16Citations
Citations of this article
15Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Background: Soluble fibrin (sFn) is a marker for disseminated intravascular coagulation and may have prognostic significance, especially in metastasis. However, a role for sFn in the etiology of metastatic cancer growth has not been extensively studied. We have reported that sFn cross-linked platelet binding to tumor cells via the major platelet fibrin receptor αllbβ3, and tumor cell CD54 (ICAM-1), which is the receptor for two of the leukocyte β2 integrins (αLβ2 and aMβ2). We hypothesized that sFn may also affect leukocyte adherence, recognition, and killing of tumor cells. Furthermore, in a rat experimental metastasis model sFn pre-treatment of tumor cells enhanced metastasis by over 60% compared to untreated cells. Other studies have shown that fibrin(ogen) binds to the monocyte integrin αMβ2. This study therefore sought to investigate the effect of sFn on β2 integrin mediated monocyte adherence and killing of tumor cells. Methods: The role of sFn in monocyte adherence and cytotoxicity against tumor cells was initially studied using static microplate adherence and cytotoxicity assays, and under physiologically relevant flow conditions in a microscope perfusion incubator system. Blocking studies were performed using monoclonal antibodies specific for β2 integrins and CD54, and specific peptides which inhibit sFn binding to these receptors. Results: Enhancement of monocyte/tumor cell adherence was observed when only one cell type was bound to sFn, but profound inhibition was observed when sFn was bound to both monocytes and tumor cells. This effect was also reflected in the pattern of monocyte cytotoxicity. Studies using monoclonal blocking antibodies and specific blocking peptides (which did not affect normal coagulation) showed that the predominant mechanism of fibrin inhibition is via its binding to αMβ2 on monocytes, and to CD54 on both leukocytes and tumor cells. Conclusion: sFn inhibits monocyte adherence and cytotoxicity of tumor cells by blocking αLβ2 and αM β2 binding to tumor cell CD54. These results demonstrate that sFn is immunosuppressive and may be directly involved in the etiology of metastasis. Use of specific peptides also inhibited this effect without affecting coagulation, suggesting their possible use as novel therapeutic agents in cancer metastasis. © 2006 Biggerstaff et al; licensee Biomed Central Ltd.

Figures

  • Table 1: Designation of sFn inhibitory peptides, sequences, molecule of origin and ligand
  • Figure 8 shows the effect of two specific peptides, designated P3 and P4 on sFn inhibition of monocyte adherence to A375 melanoma cells in a flowing microscope stage incubator. P3 represents the CD54 major binding site for sFn and P4 represents the α Mβ2 major binding site for sFn. From the left, the first bar (+/+) shows the mean (+SD) when both monocytes and tumor cells were pre-incubated for 20 min with sFn. SFn considerably reduced monocyte adherence (P < 0.05 compared to untreated cells). Pre-treatment with sFn with P3 and P4 prior to its incubation with tumor cells and monocytes (which should block its binding) resulted in a marked increase in cell adherence, which was not significantly different than the untreated control (Bar 2; +P3P4/+P3P4;P < 0.05), thus reversing sFn inhibition of adherence. As expected, addition of peptides P3 and P4 to cells did not significantly affect adherence (Bar 3; -P3P4/-P3P4; P > 0.05 compared to untreated). When sFn was treated with P3 and incubated with tumor cells, and monocytes were untreated, little or no inhibition was observed, because α Mβ2 could still bind to CD54 directly (Bar4; +P3/-). Similarly, when sFn was pre-treated with P4 and incubated with monocytes, and tumor cells were untreated, no inhibition was observed, because tumor cells would not bind P3-sFn, and the sFn on the monocytes could bind to CD54 on the tumor cells (Bar 6; +P3/+). Similarly, when sFn was pre-treated with P4 and incubated with monocytes, and tumor cells were incubated with sFn, no inhibition was observed, because the free α Mβ2 could still bind to sFn on the tumor cells (Bar 7; +/+P4).
  • Figure 10 is a schematic diagram summarizing the results of this study. The presence of sFn on tumor cells enhances monocyte binding, probably by upregulating αMβ2 binding to sFn coated CD54 (B), which is consistent with our results and with previous reports [21,22]. Pre-treatment of monocytes (but not tumor cells) with sFn does not affect monocyte adherence, probably because free tumor cell CD54 is still available to bind monocyte αLβ2 (C). Pretreatment of both cells with sFn inhibits both αLβ2 and αMβ2 mediated adherence (D), which is the most likely situation in vivo, in patients with elevated levels of circulating sFn.

References Powered by Scopus

Hemostatic alterations in cancer patients

308Citations
N/AReaders
Get full text

Role of endogenous thrombin in tumor implantation, seeding, and spontaneous metastasis

174Citations
N/AReaders
Get full text

Thrombin generation and the pathogenesis of cancer

153Citations
N/AReaders
Get full text

Cited by Powered by Scopus

BMP4 induces M2 macrophage polarization and favors tumor progression in bladder cancer

162Citations
N/AReaders
Get full text

The prognostic value of plasma fibrinogen levels in patients with endometrial cancer: A multi-centre trial

82Citations
N/AReaders
Get full text

D-dimer: Not just an indicator of venous thrombosis but a predictor of asymptomatic hematogenous metastasis in gastric cancer patients

47Citations
N/AReaders
Get full text

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Cite

CITATION STYLE

APA

Biggerstaff, J. P., Weidow, B., Vidosh, J., Dexheimer, J., Patel, S., & Patel, P. (2006). Soluble fibrin inhibits monocyte adherence and cytotoxicity against tumor cells: Implications for cancer metastasis. Thrombosis Journal, 4. https://doi.org/10.1186/1477-9560-4-12

Readers over time

‘10‘12‘13‘14‘15‘17‘20‘22‘2301234

Readers' Seniority

Tooltip

PhD / Post grad / Masters / Doc 8

62%

Researcher 4

31%

Professor / Associate Prof. 1

8%

Readers' Discipline

Tooltip

Agricultural and Biological Sciences 8

62%

Medicine and Dentistry 3

23%

Engineering 1

8%

Mathematics 1

8%

Save time finding and organizing research with Mendeley

Sign up for free
0