Atmospheric rivers as drought busters on the U.S. West Coast

296Citations
Citations of this article
211Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Atmospheric rivers (ARs) have, in recent years, been recognized as the cause of the large majority of major floods in rivers all along the U.S. West Coast and as the source of 30%-50% of all precipitation in the same region. The present study surveys the frequency with which ARs have played a critical role as a common cause of the end of droughts on the West Coast. This question was based on the observation that, in most cases, droughts end abruptly as a result of the arrival of an especially wet month or, more exactly, a few very large storms. This observation is documented using both Palmer Drought Severity Index and 6-month Standardized Precipitation Index measures of drought occurrence for climate divisions across the conterminous United States from 1895 to 2010. When the individual storm sequences that contributed most to the wet months that broke historical West Coast droughts from 1950 to 2010 were evaluated, 33%-74% of droughts were broken by the arrival of landfalling AR storms. In the Pacific Northwest, 60%-74%of all persistent drought endings have been brought about by the arrival of AR storms. In California, about 33%-40% of all persistent drought endings have been brought about by landfalling AR storms, with more localized low pressure systems responsible for many of the remaining drought breaks. © 2013 American Meteorological Society.

Cite

CITATION STYLE

APA

Dettinger, M. D. (2013). Atmospheric rivers as drought busters on the U.S. West Coast. Journal of Hydrometeorology, 14(6), 1721–1732. https://doi.org/10.1175/JHM-D-13-02.1

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free