Graphical assessment of internal and external calibration of logistic regression models by using loess smoothers

255Citations
Citations of this article
243Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Predicting the probability of the occurrence of a binary outcome or condition is important in biomedical research. While assessing discrimination is an essential issue in developing and validating binary prediction models, less attention has been paid to methods for assessing model calibration. Calibration refers to the degree of agreement between observed and predicted probabilities and is often assessed by testing for lack-of-fit. The objective of our study was to examine the ability of graphical methods to assess the calibration of logistic regression models. We examined lack of internal calibration, which was related to misspecification of the logistic regression model, and external calibration, which was related to an overfit model or to shrinkage of the linear predictor. We conducted an extensive set of Monte Carlo simulations with a locally weighted least squares regression smoother (i.e., the loess algorithm) to examine the ability of graphical methods to assess model calibration. We found that loess-based methods were able to provide evidence of moderate departures from linearity and indicate omission of a moderately strong interaction. Misspecification of the link function was harder to detect. Visual patterns were clearer with higher sample sizes, higher incidence of the outcome, or higher discrimination. Loess-based methods were also able to identify the lack of calibration in external validation samples when an overfit regression model had been used. In conclusion, loess-based smoothing methods are adequate tools to graphically assess calibration and merit wider application. © 2013 John Wiley & Sons, Ltd.

Cite

CITATION STYLE

APA

Austin, P. C., & Steyerberg, E. W. (2014). Graphical assessment of internal and external calibration of logistic regression models by using loess smoothers. Statistics in Medicine, 33(3), 517–535. https://doi.org/10.1002/sim.5941

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free