Circular RNA circMET drives immunosuppression and anti-PD1 therapy resistance in hepatocellular carcinoma via the miR-30-5p/snail/DPP4 axis

139Citations
Citations of this article
45Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Background: Amplification of chromosome 7q21-7q31 is associated with tumor recurrence and multidrug resistance, and several genes in this region are powerful drivers of hepatocellular carcinoma (HCC). We aimed to investigate the key circular RNAs (circRNAs) in this region that regulate the initiation and development of HCC. Methods: We used qRT-PCR to assess the expression of 43 putative circRNAs in this chromosomal region in human HCC and matched nontumor tissues. In addition, we used cultured HCC cells to modify circRNA expression and assessed the effects in several cell-based assays as well as gene expression analyses via RNA-seq. Modified cells were implanted into immunocompetent mice to assess the effects on tumor development. We performed additional experiments to determine the mechanism of action of these effects. Results: circMET (hsa_circ_0082002) was overexpressed in HCC tumors, and circMET expression was associated with survival and recurrence in HCC patients. By modifying the expression of circMET in HCC cells in vitro, we found that circMET overexpression promoted HCC development by inducing an epithelial to mesenchymal transition and enhancing the immunosuppressive tumor microenvironment. Mechanistically, circMET induced this microenvironment through the miR-30-5p/Snail/dipeptidyl peptidase 4(DPP4)/CXCL10 axis. In addition, the combination of the DPP4 inhibitor sitagliptin and anti-PD1 antibody improved antitumor immunity in immunocompetent mice. Clinically, HCC tissues from diabetic patients receiving sitagliptin showed higher CD8+ T cell infiltration than those from HCC patients with diabetes without sitagliptin treatment. Conclusions: circMET is an onco-circRNA that induces HCC development and immune tolerance via the Snail/DPP4/CXCL10 axis. Furthermore, sitagliptin may enhance the efficacy of anti-PD1 therapy in a subgroup of patients with HCC.

Cite

CITATION STYLE

APA

Huang, X. Y., Zhang, P. F., Wei, C. Y., Peng, R., Lu, J. C., Gao, C., … Shi, G. M. (2020). Circular RNA circMET drives immunosuppression and anti-PD1 therapy resistance in hepatocellular carcinoma via the miR-30-5p/snail/DPP4 axis. Molecular Cancer, 19(1). https://doi.org/10.1186/s12943-020-01213-6

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free