Rolling bearing fault identification using multilayer deep learning convolutional neural network

29Citations
Citations of this article
24Readers
Mendeley users who have this article in their library.

Abstract

The vibration signal of rolling bearing is usually complex and the useful fault information is hidden in the background noise, therefore, it is a challenge to identify rolling bearing faults from the complex vibration environment. In this paper, a novel multilayer deep learning convolutional neural network (CNN) method to identify rolling bearing fault is proposed. Firstly, in order to avoid the influence of different characteristics of the input data on the identification accuracy, a normalization preprocessing method is applied to preprocess the vibration signals of rolling bearings. Secondly, a multilayer CNN based on deep learning is designed in this paper to improve the fault identification accuracy of rolling bearing. Simulation data and experimental data analysis results show that the proposed method has better performance than SVM method and ANN method without any manual feature extractor design.

Cite

CITATION STYLE

APA

Jiang, H., Wang, F., Shao, H., & Zhang, H. (2017). Rolling bearing fault identification using multilayer deep learning convolutional neural network. Journal of Vibroengineering, 19(1), 138–149. https://doi.org/10.21595/jve.2016.16939

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free