Ligand Effects on the Reactivity of [CoX]+ (X = CN, F, Cl, Br, O, OH) Towards CO2: Gas-Phase Generation of the Elusive Cyanoformate by [Co(CN)]+ and [Fe(CN)]+

11Citations
Citations of this article
8Readers
Mendeley users who have this article in their library.
Get full text

Abstract

The thermal reactions of [CoX]+ (X = CN, F, Cl, Br, O, OH) with carbon dioxide have been investigated experimentally and theoretically by using electrospray ionization mass spectrometry (ESI-MS) and density functional theory. Surprisingly, in contrast to the complete inertness of [CoX]+ (X = F, Cl, Br, O, OH) toward carbon dioxide, [Co(CN)]+ activates carbon dioxide to form the elusive [NCCO2Co]+ ion in the gas phase. Mechanistic investigation into this ligand-controlled CO2 activation via C_C bond formation, mediated by a first-row late transition-metal complex, reveals that the inertness of [CoX]+ (X = F, Cl, Br, O, OH) is due to kinetic barriers located above the entrance asymptote. The exception is the [Co(CN)]+/CO2 couple, for which the thermal C–C bond formation is both thermochemically and kinetically accessible. Interestingly, a cyanoformate ligand is most likely also formed in the reaction of [Fe(CN)]+ with CO2; cyanoformate formation had been suggested earlier as a protective mechanism to prevent cyanide complexation to the iron-containing active site of the enzyme ACC oxidase (Murphy et al., in Science 344:75–78, 2014).

Cite

CITATION STYLE

APA

Firouzbakht, M., Rijs, N. J., Schlangen, M., Kaupp, M., & Schwarz, H. (2018). Ligand Effects on the Reactivity of [CoX]+ (X = CN, F, Cl, Br, O, OH) Towards CO2: Gas-Phase Generation of the Elusive Cyanoformate by [Co(CN)]+ and [Fe(CN)]+. Topics in Catalysis, 61(7–8), 575–584. https://doi.org/10.1007/s11244-018-0903-8

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free