The green alga Chlamydomonas reinhardtii is an invaluable reference organism to research fields including algal, plant, and ciliary biology. Accordingly, decades-long standing inefficiencies in targeted nuclear gene editing broadly hinder Chlamydomonas research. Here we report that single-step codelivery of CRISPR/Cpf1 ribonucleoproteins with single-stranded DNA repair templates results in precise and targeted DNA replacement with as much as ∼10% efficiency in C. reinhardtii. We demonstrate its use in transgene- and selection-free generation of sequence-specific mutations and epitope tagging at an endogenous locus. As the direct delivery of gene-editing reagents bypasses the use of transgenes, this method is potentially applicable to a wider range of species without the need to develop methods for stable transformation.
CITATION STYLE
Ferenczi, A., Pyott, D. E., Xipnitou, A., Molnar, A., & Merchant, S. S. (2017). Efficient targeted DNA editing and replacement in Chlamydomonas reinhardtii using Cpf1 ribonucleoproteins and single-stranded DNA. Proceedings of the National Academy of Sciences of the United States of America, 114(51), 13567–13572. https://doi.org/10.1073/pnas.1710597114
Mendeley helps you to discover research relevant for your work.