Sevoflurane anesthesia ameliorates LPS-induced acute lung injury (ALI) by modulating a novel LncRNA LINC00839/miR-223/NLRP3 axis

6Citations
Citations of this article
6Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Background: Sevoflurane is considered as a lung-protective factor in acute lung injury (ALI), but the underlying molecular mechanism remains largely unknown. The present study identified for the first time that sevoflurane ameliorated lipopolysaccharide (LPS)-induced ALI through regulating a novel long non-coding RNA LINC00839, and uncovered its regulatory mechanism. Methods: LPS-induced ALI models were established in mice or mouse pulmonary microvascular endothelial cells (MPVECs), and they were administered with sevoflurane. Real-Time quantitative PCR, western blot and bioinformatics analysis were performed to screen the aberrantly expressed long non-coding RNA and the downstream molecules in sevoflurane-treated ALI models, and their roles in the protection effect of sevoflurane were verified by functional recovery experiments. Results: Sevoflurane relieved LPS-induced lung injury, cell pyroptosis and inflammation in vitro and in vivo. LINC00839 was significantly suppressed by sevoflurane, and overexpression of LINC00839 abrogated the protective effects of sevoflurane on LPS-treated MPVECs. Mechanismly, LINC00839 positively regulated NOD-like receptor protein 3 (NLRP3) via sequestering miR-223. MiR-223 inhibitor reversed the inhibitory effects of LINC00839 knockdown on NLRP3-mediated pyroptosis in LPS-treated MPVECs. Furthermore, both miR-223 ablation and NLRP3 overexpression abrogated the protective effects of sevoflurane on LPS-treated MPVECs. Conclusion: In general, our work illustrates that sevoflurane regulates the LINC00839/miR-223/NLRP3 axis to ameliorate LPS-induced ALI, which might provide a novel promising candidate for the prevention of ALI.

Cite

CITATION STYLE

APA

Fu, Z., Wu, X., Zheng, F., & Zhang, Y. (2022). Sevoflurane anesthesia ameliorates LPS-induced acute lung injury (ALI) by modulating a novel LncRNA LINC00839/miR-223/NLRP3 axis. BMC Pulmonary Medicine, 22(1). https://doi.org/10.1186/s12890-022-01957-5

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free