Imp-L2, a putative homolog of vertebrate IGF-binding protein 7, counteracts insulin signaling in Drosophila and is essential for starvation resistance

190Citations
Citations of this article
181Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Background. Insulin and insulin-like growth factors (IGFs) signal through a highly conserved pathway and control growth and metabolism in both vertebrates and invertebrates. In mammals, insulin-like growth factor binding proteins (IGFBPs) bind IGFs with high affinity and modulate their mitogenic, anti-apoptotic and metabolic actions, but no functional homologs have been identified in invertebrates so far. Results. Here, we show that the secreted Imaginal morphogenesis protein-Late 2 (Imp-L2) binds Drosophila insulin-like peptide 2 (Dilp2) and inhibits growth non-autonomously. Whereas over-expressing Imp-L2 strongly reduces size, loss of Imp-L2 function results in an increased body size. Imp-L2 is both necessary and sufficient to compensate Dilp2-induced hyperinsulinemia in vivo. Under starvation conditions, Imp-L2 is essential for proper dampening of insulin signaling and larval survival. Conclusion. Imp-L2, the first functionally characterized insulin-binding protein in invertebrates, serves as a nutritionally controlled suppressor of insulin-mediated growth in Drosophila. Given that Imp-L2 and the human tumor suppressor IGFBP-7 show sequence homology in their carboxy-terminal immunoglobulin-like domains, we suggest that their common precursor was an ancestral insulin-binding protein. © 2008 Honegger et al.; licensee BioMed Central Ltd.

Cite

CITATION STYLE

APA

Honegger, B., Galic, M., Köhler, K., Wittwer, F., Brogiolo, W., Hafen, E., & Stocker, H. (2008). Imp-L2, a putative homolog of vertebrate IGF-binding protein 7, counteracts insulin signaling in Drosophila and is essential for starvation resistance. Journal of Biology, 7(3). https://doi.org/10.1186/jbiol72

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free