The toxic and lethal effects of the trehalase inhibitor trehazolin in locusts are caused by hypoglycaemia

81Citations
Citations of this article
44Readers
Mendeley users who have this article in their library.

Abstract

The main blood sugar of locusts is trehalose, which is hydrolysed to two glucose units by trehalase. Homogenates of locust flight muscles are rich in trehalase activity, which is bound to membranes. A minor fraction of trehalase is in an overt form while the remainder is latent, i.e. active only after impairing membrane integrity. Trehazolin, an antibiotic pseudosaccharide, inhibits locust flight muscle trehalase with apparent Ki- and EC50 values of 10-8 mol l-1 and 10-7mol l-1, respectively. Trehazolin is insecticidal: 50 μg injected into locusts completely and selectively blocked the overt form of muscle trehalase (with little effect on latent activity) and killed 50% of the insects within 24 h. Here, it is demonstrated for the first time that trehazolin causes dramatic hypoglycaemia. Injection of 10 μg trehazolin caused glucose levels to fall by over 90% in 24 h, from 2.8 mmol l-1 to 0.23 mmol l-1, while trehalose increased from 61 mmol l-1 to 111 mmol l-1. Feeding glucose to the locusts fully neutralized the effects of a potentially lethal dose of trehazolin. This indicates that hypertrehalosaemia is not acutely toxic, whereas lack of glucose causes organ failure (presumably of the nervous system), and that sufficient haemolymph glucose can only be generated from trehalose by trehalase. The results also suggest that overt flight muscle trehalase is located in the plasma membrane with the active site accessible to the haemolymph. Trehalase inhibitors are valuable tools for studying the molecular physiology of trehalase function and sugar metabolism in insects.

Cite

CITATION STYLE

APA

Wegener, G., Tschiedel, V., Schlöder, P., & Ando, O. (2003). The toxic and lethal effects of the trehalase inhibitor trehazolin in locusts are caused by hypoglycaemia. Journal of Experimental Biology, 206(7), 1233–1240. https://doi.org/10.1242/jeb.00217

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free