Selecting the best forecasting-implied volatility model using genetic programming

9Citations
Citations of this article
32Readers
Mendeley users who have this article in their library.

Abstract

The volatility is a crucial variable in option pricing and hedging strategies. The aim of this paper is to provide some initial evidence of the empirical relevance of genetic programming to volatility's forecasting. By using real data from S&P500 index options, the genetic programming's ability to forecast Black and Scholes-implied volatility is compared between time series samples and moneyness-time to maturity classes. Total and out-of-sample mean squared errors are used as forecasting's performance measures. Comparisons reveal that the time series model seems to be more accurate in forecasting-implied volatility than moneyness time to maturity models. Overall, results are strongly encouraging and suggest that the genetic programming approach works well in solving financial problems.

Cite

CITATION STYLE

APA

Abdelmalek, W., Hamida, S. B., & Abid, F. (2009). Selecting the best forecasting-implied volatility model using genetic programming. Journal of Applied Mathematics and Decision Sciences, 2009. https://doi.org/10.1155/2009/179230

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free