Peripheral hyperinsulinemia promotes tau phosphorylation in vivo

126Citations
Citations of this article
106Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Cerebral insulin receptors play an important role in regulation of energy homeostasis and development of neurodegeneration. Accordingly, type 2 diabetes characterized by insulin resistance is associated with an increased risk of developing Alzheimer's disease. Formation of neurofibrillary tangles, which contain hyperphosphorylated tau, represents a key step in the pathogenesis of neurodegenerative diseases. Here, we directly addressed whether peripheral hyperinsulinemia as one feature of type 2 diabetes can alter in vivo cerebral insulin signaling and tau phosphorylation. Peripheral insulin stimulation rapidly increased insulin receptor tyrosine phosphorylation, mitogen-activated protein kinase and phosphatidylinositol (PI) 3-kinase pathway activation, and dose-dependent tau phosphorylation at Ser202 in the central nervous system. Phospho-FoxO1 and PI-3,4,5-phosphate immunostainings of brains from insulin-stimulated mice showed neuronal staining throughout the brain, not restricted to brain areas without functional blood-brain barrier. Importantly, in insulinstimulated neuronal/brain-specific insulin receptor knockout mice, cerebral insulin receptor signaling and tau phosphorylation were completely abolished. Thus, peripherally injected insulin directly targets the brain and causes rapid cerebral insulin receptor signal transduction and site-specific tau phosphorylation in vivo, revealing new insights into the linkage of type 2 diabetes and neurodegeneration. © 2005 by the American Diabetes Association.

Cite

CITATION STYLE

APA

Freude, S., Plum, L., Schnitker, J., Leeser, U., Udelhoven, M., Krone, W., … Schubert, M. (2005). Peripheral hyperinsulinemia promotes tau phosphorylation in vivo. Diabetes, 54(12), 3343–3348. https://doi.org/10.2337/diabetes.54.12.3343

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free