In recent years, there has been a frequent occurrence of extremely cold conditions which has had a serious impact on the life of residents of buildings in various locations around the world. However, there have only been a very limited number of studies on the effects of residential area building layout on the winter wind environments, which led to a lack of quantitative guidance for residential area planning in severely cold regions. This study aims to reveal the relationship between (1) the residential areas' building density, floor area ratio, wind projection angle, average building height, and relative position of high-rise buildings, and; (2) the mean wind velocity ratio at pedestrian level in severe cold regions. In this study, the pedestrian-level outdoor wind environments in 24 typical residential areas of Harbin, China, are simulated using ENVI-met software. The results show that the relative position of high-rise buildings in multi-high-level mixed residential areas has little influence on the mean wind velocity ratio, and the maximum difference is 0.04. The factors of building layout have little influence on the mean wind velocity ratio of multistory residential areas. However, a significant linear correlation exists between the mean wind velocity ratio of high-rise residential areas and both the building density and wind projection angle. The prediction model of the mean pedestrian-level wind velocity ratio was then established.
CITATION STYLE
Jin, H., Liu, Z., Jin, Y., Kang, J., & Liu, J. (2017). The effects of residential area building layout on outdoor wind environment at the pedestrian level in severe cold regions of China. Sustainability (Switzerland), 9(12). https://doi.org/10.3390/su9122310
Mendeley helps you to discover research relevant for your work.