Dissecting Specificity in the Janus Kinases: The Structures of JAK-Specific Inhibitors Complexed to the JAK1 and JAK2 Protein Tyrosine Kinase Domains

218Citations
Citations of this article
177Readers
Mendeley users who have this article in their library.
Get full text

Abstract

The Janus kinases (JAKs) are a pivotal family of protein tyrosine kinases (PTKs) that play prominent roles in numerous cytokine signaling pathways, with aberrant JAK activity associated with a variety of hematopoietic malignancies, cardiovascular diseases and immune-related disorders. Whereas the structures of the JAK2 and JAK3 PTK domains have been determined, the structure of the JAK1 PTK domain is unknown. Here, we report the high-resolution crystal structures of the "active form" of the JAK1 PTK domain in complex with two JAK inhibitors, a tetracyclic pyridone 2-t-butyl-9-fluoro-3,6-dihydro-7H-benz[h]-imidaz[4,5-f]isoquinoline-7-one (CMP6) and (3R,4R)-3-[4-methyl-3-[N-methyl-N-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)amino]piperidin-1-yl]-3-oxopropionitrile (CP-690,550), and compare them with the corresponding JAK2 PTK inhibitor complexes. Both inhibitors bound in a similar manner to JAK1, namely buried deep within a constricted ATP-binding site, thereby providing a basis for the potent inhibition of JAK1. As expected, the mode of inhibitor binding in JAK1 was very similar to that observed in JAK2, highlighting the challenges in developing JAK-specific inhibitors that target the ATP-binding site. Nevertheless, differences surrounding the JAK1 and JAK2 ATP-binding sites were apparent, thereby providing a platform for the rational design of JAK2- and JAK1-specific inhibitors. Crown Copyright © 2009.

Cite

CITATION STYLE

APA

Williams, N. K., Bamert, R. S., Patel, O., Wang, C., Walden, P. M., Wilks, A. F., … Lucet, I. S. (2009). Dissecting Specificity in the Janus Kinases: The Structures of JAK-Specific Inhibitors Complexed to the JAK1 and JAK2 Protein Tyrosine Kinase Domains. Journal of Molecular Biology, 387(1), 219–232. https://doi.org/10.1016/j.jmb.2009.01.041

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free