Mineralization of Recalcitrant Organic Pollutants in Pulp and Paper Mill Wastewaters through Ozonation Catalyzed by Cu-Ce Supported on Al2O3

22Citations
Citations of this article
23Readers
Mendeley users who have this article in their library.

Abstract

There has been great interest in developing cost-effective and high- performance catalysts for the ozonation treatment of biologically refractory wastewaters. This study developed a novel copper-cerium oxide supported alumina (Cu-Ce/Al2O3) catalyst for the catalytic ozonation of pulp and paper mill wastewater. The evenly distributed composite metal oxides on the surface of catalysts evidently improved the catalytic degradation efficiency. The Cu-Ce/Al2O3/O3 process increased the total organic carbon (TOC) removal by 6.5%, 9.5%, 24.5%, and 35.5%, compared with Ce/Al2O3/O3, Cu/Al2O3/O3, Al2O3/O3, and ozone alone processes, respectively. The enhanced catalytic ozonation efficiency was mainly ascribed to an increased hydroxyl radical (·OH)-mediated ozonation, both in the bulk solution and on the surface of catalysts. The surface hydroxyl groups (-OHs) of Al2O3 along with the deposited Cu-Ce oxides greatly enhanced the catalytic performance. This work illustrated potential applications of Cu-Ce/Al2O3 catalyzed ozonation for the advanced treatment of biologically recalcitrant wastewaters.

Cite

CITATION STYLE

APA

He, S., Luan, P., Mo, L., Xu, J., Li, J., Zhu, L., & Zeng, J. (2018). Mineralization of Recalcitrant Organic Pollutants in Pulp and Paper Mill Wastewaters through Ozonation Catalyzed by Cu-Ce Supported on Al2O3. BioResources, 13(2), 3686–3703. https://doi.org/10.15376/biores.13.2.3686-3703

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free