Mitochondrial impairment triggers cytosolic oxidative stress and cell death following proteasome inhibition

158Citations
Citations of this article
190Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Dysfunctions of the mitochondria and the ubiquitin-proteasome system, as well as generation of reactive oxygen species (ROS), are linked to many aging-related neurodegenerative disorders. However, the order of these events remains unclear. Here, we show that the initial impairment occurs in mitochondria under proteasome inhibition. Fluorescent redox probe measurements revealed that proteasome inhibition led to mitochondrial oxidation followed by cytosolic oxidation, which could be prevented by a mitochondrial-targeted antioxidant or antioxidative enzyme. These observations demonstrated that proteasome dysfunction causes damage to mitochondria, leading them to increase their ROS production and resulting in cytosolic oxidation. Moreover, several antioxidants found in foods prevented intracellular oxidation and improved cell survival by maintaining mitochondrial membrane potential and reducing mitochondrial ROS generation. However, these antioxidant treatments did not decrease the accumulation of protein aggregates caused by inhibition of the proteasome. These results suggested that antioxidative protection of mitochondria maintains cellular integrity, providing novel insights into the mechanisms of cell death caused by proteasome dysfunction.

Cite

CITATION STYLE

APA

Maharjan, S., Oku, M., Tsuda, M., Hoseki, J., & Sakai, Y. (2014). Mitochondrial impairment triggers cytosolic oxidative stress and cell death following proteasome inhibition. Scientific Reports, 4. https://doi.org/10.1038/srep05896

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free