We studied the nitrogen biogeochemistry of the ice-covered eastern Bering Sea shelf using the isotope ratios (15N/14N and 18O/16O) of NO3- and other N species. The 15N/14N of late winter NO3- on the shelf decreases inshore and is inversely correlated with bottom water [NH4+], consistent with an input of low- 15N/14N NO3- from partial nitrification of NH4+ remineralized from the sediments. An inshore 15N/14N increase in total dissolved N (TDN) suggests that (1) the sediment-derived NH4+ is elevated in 15N due to the same partial nitrification that yields the low- 15N/14N NO3-, and (2) 15N-deplete NO3- from partial nitrification within the sediments is denitrified to N2. The proportion of newly nitrified NO3- on the shelf, evidenced by an inshore decrease in NO3-18O/16O, is correlated with the N deficit, further implicating nitrification coupled to denitrification; however, a simple N isotope budget indicates a comparable rate of denitrification supported by diffusion of NO3- into the sediments. The isotopic impact of benthic N loss is further demonstrated by a correlation between the 15N/14N of shelf surface sediment and the N deficit of the overlying water column, both of which increase inshore and northward, as well as by Arctic NO3- isotope data indicating that the fixed N transported through Bering Strait has a 15N/14N higher than is found in the open Bering Sea. The significant net isotope effect of benthic N loss on the Bering shelf, 6-8 ‰, is at odds with previous assumptions regarding the global ocean's N isotope budget. Copyright 2011 by the American Geophysical Union.
CITATION STYLE
Granger, J., Prokopenko, M. G., Sigman, D. M., Mordy, C. W., Morse, Z. M., Morales, L. V., … Plessen, B. (2011). Coupled nitrification-denitrification in sediment of the eastern Bering Sea shelf leads to 15N enrichment of fixed N in shelf waters. Journal of Geophysical Research: Oceans, 116(11). https://doi.org/10.1029/2010JC006751
Mendeley helps you to discover research relevant for your work.