Background. Brucella species are facultative intracellular bacteria that cause lifelong infections in humans and livestock. Methods. Here we evaluated the contribution of B cells in control of murine brucellosis in the more susceptible BALB/c and the more resistant C57BL/6 mice by infecting B cell-deficient mice. Results. Strikingly, in the absence of B cells in both C57BL/6 and BALB/c mice, 99% and 99.5% of the infection found in wild type mice was cleared, respectively. This augmented clearance was not reversed in either strain by passive transfer of immune serum. In C57BL/6 mice, the clearance of infection coincided with an increase in interferon γ (IFN-γ)- producing CD4 and CD8 T cells and a reduction in interleukin 10 (IL-10)-producing cells. In BALB/c mice, this clearance was IFN-γ- dependent, as B cell/IFN-γ dual knockout mice were unable to clear the infection, and was inversely related to the levels of transforming growth factor β (TGF-β). Furthermore, B cells were found to produce TGF-β and IL-10 during early stages of infection in BALB/c wild-type and C57BL/6 wild-type mice, respectively. Conclusions. Thus, we demonstrate that the establishment of the high plateau phase of infection is dependent on non-antibody-mediated B cell effector mechanisms, including B regulatory functions, during murine brucellosis. © The Author 2011. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved.
CITATION STYLE
Goenka, R., Parent, M. A., Elzer, P. H., & Baldwin, C. L. (2011). B cell-deficient mice display markedly enhanced resistance to the intracellular bacterium Brucella abortus. Journal of Infectious Diseases, 203(8), 1136–1146. https://doi.org/10.1093/infdis/jiq171
Mendeley helps you to discover research relevant for your work.