Objectives:To investigate if perinatal Omega-3 polyunsaturated fatty acids (n-3 PUFAs) supplementation can improve sevoflurane-induced neurotoxicity and cognitive impairment in neonatal rats.Methods:Female Sprague-Dawley rats (n = 3 each group) were treated with or without an n-3 PUFAs (fish oil) enriched diet from the second day of pregnancy to 14 days after parturition. The offspring rats (P7) were treated with six hours sevoflurane administration (one group without sevoflurane/prenatal n-3 PUFAs supplement as control). The 5-bromodeoxyuridine (Brdu) was injected intraperitoneally during and after sevoflurane anesthesia to assess dentate gyrus (DG) progenitor proliferation. Brain tissues were harvested and subjected to Western blot and immunohistochemistry respectively. Morris water maze spatial reference memory, fear conditioning, and Morris water maze memory consolidation were tested at P35, P63 and P70 (n = 9), respectively.Results:Six hours 3% sevoflurane administration increased the cleaved caspase-3 in the thalamus, parietal cortex but not hippocampus of neonatal rat brain. Sevoflurane anesthesia also decreased the neuronal precursor proliferation of DG in rat hippocampus. However, perinatal n-3 PUFAs supplement could decrease the cleaved caspase-3 in the cerebral cortex of neonatal rats, and mitigate the decrease in neuronal proliferation in their hippocampus. In neurobehavioral studies, compared with control and n-3 PUFAs supplement groups, we did not find significant spatial cognitive deficit and early long-term memory impairment in sevoflurane anesthetized neonatal rats at their adulthood. However, sevoflurane could impair the immediate fear response and working memory and short-term memory. And n-3 PUFAs could improve neurocognitive function in later life after neonatal sevoflurane exposure.Conclusion:Our study demonstrated that neonatal exposure to prolonged sevoflurane could impair the immediate fear response, working memory and short-term memory of rats at their adulthood, which may through inducing neuronal apoptosis and decreasing neurogenesis. However, these sevoflurane-induced unfavorable neuronal effects can be mitigated by perinatal n-3 PUFAs supplementation. © 2013 Lei et al.
CITATION STYLE
Lei, X., Zhang, W., Liu, T., Xiao, H., Liang, W., Xia, W., & Zhang, J. (2013). Perinatal Supplementation with Omega-3 Polyunsaturated Fatty Acids Improves Sevoflurane-Induced Neurodegeneration and Memory Impairment in Neonatal Rats. PLoS ONE, 8(8). https://doi.org/10.1371/journal.pone.0070645
Mendeley helps you to discover research relevant for your work.