Uncertainty quantification for deep learning in particle accelerator applications

N/ACitations
Citations of this article
10Readers
Mendeley users who have this article in their library.

Abstract

With the advent of increased computational resources and improved algorithms, machine learning-based models are being increasingly applied to complex problems in particle accelerators. However, such data-driven models may provide overly confident predictions with unknown errors and uncertainties. For reliable deployment of machine learning models in high-regret and safety-critical systems such as particle accelerators, estimates of prediction uncertainty are needed along with accurate point predictions. In this investigation, we evaluate Bayesian neural networks (BNN) as an approach that can provide accurate predictions along with reliably quantified uncertainties for particle accelerator problems, and compare their performance with bootstrapped ensembles of neural networks. We select three accelerator setups for this evaluation: a storage ring, a photoinjector, and a linac. The problems span different data volumes and dimensionalities (e.g., scalar predictions as well as image outputs). It is found that BNN provide accurate predictions of the mean along with reliable estimates of predictive uncertainty across the test cases. In this vein, BNN may offer an attractive alternative to deterministic deep learning tools to generate accurate predictions with quantified uncertainties in particle accelerator applications.

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Cite

CITATION STYLE

APA

Mishra, A. A., Edelen, A., Hanuka, A., & Mayes, C. (2021). Uncertainty quantification for deep learning in particle accelerator applications. Physical Review Accelerators and Beams, 24(11). https://doi.org/10.1103/PhysRevAccelBeams.24.114601

Readers' Seniority

Tooltip

Researcher 6

86%

PhD / Post grad / Masters / Doc 1

14%

Readers' Discipline

Tooltip

Computer Science 4

67%

Engineering 1

17%

Physics and Astronomy 1

17%

Save time finding and organizing research with Mendeley

Sign up for free