Gravitational instabilities induced by cluster environment? the encounter-induced angular momentum transfer in discs

18Citations
Citations of this article
11Readers
Mendeley users who have this article in their library.

Abstract

Aims. The aim of this work is to understand to what extent gravitational interactions between the stars in high-density young stellar clusters, like the Orion Nebula Cluster (ONC), change the angular momentum in their protoplanetary discs. Methods. Two types of simulations were combined - N-body simulations of the dynamics of the stars in the ONC, and angular momentum loss results from simulations of star-disc encounters. Results. It is shown that in a star-disc encounter, the angular momentum loss is usually larger than the mass loss, so that the disc remnant has a lower specific angular momentum. Assuming an age of 1-2 Myr for the ONC, the disc angular momentum in the higher density region of the Trapezium is reduced by 15-20% on average. Encounters therefore play an important part in the angular momentum transport in these central regions, but are not the dominant process. More importantly, even in the outer cluster regions the angular momentum loss is on average 3-5%. Here it is shown that a 3-5% loss in angular momentum might be enough to trigger gravitational instabilities even in low-mass discs - a possible prerequisite for the formation of planetary systems. © ESO 2007.

Cite

CITATION STYLE

APA

Pfalzner, S., & Olczak, C. (2007). Gravitational instabilities induced by cluster environment? the encounter-induced angular momentum transfer in discs. Astronomy and Astrophysics, 462(1), 193–198. https://doi.org/10.1051/0004-6361:20066037

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free