The increasing demand and consumption of cement have necessitated the use of slag, fly ash, rice husk ash (RHA), and so forth as a supplement of cement in concrete construction. The aim of the study is to develop a zero-cement binder (Z-Cem) using slag, fly ash, and RHA combined with chemical activator. NaOH, Ca(OH) 2, and KOH were used in varying weights and molar concentrations. Z-Cem was tested for its consistency, setting time, flow, compressive strength, XRD, SEM, and FTIR. The consistency and setting time of the Z-Cem paste increase with increasing RHA content. The Z-Cem mortar requires more superplasticizer to maintain a constant flow of 110 ± 5 % compared with OPC. The compressive strength of the Z-Cem mortar is significantly influenced by the amounts, types, and molar concentration of the activators. The Z-Cem mortar achieves a compressive strength of 42-44 MPa at 28 days with 5% NaOH or at 2.5 molar concentrations. The FTIR results reveal that molecules in the Z-Cem mortar have a silica-hydrate (Si-H) bond with sodium or other inorganic metals (i.e., sodium/calcium-silica-hydrate-alumina gel). Therefore, Z-Cem could be developed using the aforementioned materials with the chemical activator.
CITATION STYLE
Karim, M. R., Zain, M. F. M., Jamil, M., & Lai, F. C. (2015). Development of a zero-cement binder using slag, fly ash, and rice husk ash with chemical activator. Advances in Materials Science and Engineering, 2015. https://doi.org/10.1155/2015/247065
Mendeley helps you to discover research relevant for your work.