Studies of delayed electroluminescence in highly efficient fluorescent organic light-emitting diodes (OLEDs) of many dissimilar architectures indicate that the triplet-triplet annihilation (TTA) significantly increases yield of excited singlet states-emitting molecules in this type of device thereby contributes substantially to their efficiency. Towards the end of the 2000s, the essential role of TTA in realizing highly efficient fluorescent devices was widely recognized. Analysis of a diverse set of fluorescent OLEDs shows that high efficiencies are often correlated to TTA extents. It is therefore likely that it is the long-term empirical optimization of OLED efficiencies that has resulted in fortuitous emergence of TTA as a large and ubiquitous contributor to efficiency. TTA contributions as high as 20-30% are common in the state-of-the-art OLEDs, and even become dominant in special cases, where TTA is shown to substantially exceed the spin-statistical limit. The fundamental features of OLED efficiency enhancement via TTA-molecular structure-dependent contributions, current density-dependent intensities in practical devices and frequently observed antagonistic relationships between TTA extent and OLED lifetime-came to be understood over the course of the next few years. More recently, however, there was much less reported progress with respect to all-important quantitative details of the TTA mechanism. It should be emphasized that, to this day and despite the decades of work on improving blue phosphorescent OLEDs as well as the recent advent of thermally activated delayed fluorescence OLEDs, the majority of practical blue OLEDs still rely on TTA. Considering such practical importance of fluorescent blue OLEDs, the design of blue OLED-compatible materials capable of substantially exceeding the spin-statistical limit in TTA, elimination of the antagonistic relationship between TTA-related efficiency gains and lifetime losses, and designing devices with an extended range of current densities producing near-maximum TTA electroluminescence are the areas where future improvements would be most beneficial.
CITATION STYLE
Kondakov, D. Y. (2015, June 28). Triplet-triplet annihilation in highly efficient fluorescent organic Light-Emitting Diodes: Current state and future outlook. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences. Royal Society of London. https://doi.org/10.1098/rsta.2014.0321
Mendeley helps you to discover research relevant for your work.