Dimeric allostery mechanism of the plant circadian clock photoreceptor ZEITLUPE

4Citations
Citations of this article
19Readers
Mendeley users who have this article in their library.

Abstract

In Arabidopsis thaliana, the Light-Oxygen-Voltage (LOV) domain containing protein ZEITLUPE (ZTL) integrates light quality, intensity, and duration into regulation of the circadian clock. Recent structural and biochemical studies of ZTL indicate that the protein diverges from other members of the LOV superfamily in its allosteric mechanism, and that the divergent allosteric mechanism hinges upon conservation of two signaling residues G46 and V48 that alter dynamic motions of a Gln residue implicated in signal transduction in all LOV proteins. Here, we delineate the allosteric mechanism of ZTL via an integrated computational approach that employs atomistic simulations of wild type and allosteric variants of ZTL in the functional dark and light states, together with Markov state and supervised machine learning classification models. This approach has unveiled key factors of the ZTL allosteric mechanisms, and identified specific interactions and residues implicated in functional allosteric changes. The final results reveal atomic level insights into allosteric mechanisms of ZTL function that operate via a non-trivial combination of population-shift and dynamics-driven allosteric pathways.

Cite

CITATION STYLE

APA

Trozzi, F., Wang, F., Verkhivker, G., Zoltowski, B. D., & Tao, P. (2021). Dimeric allostery mechanism of the plant circadian clock photoreceptor ZEITLUPE. PLoS Computational Biology, 17(7). https://doi.org/10.1371/journal.pcbi.1009168

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free