'Stevens' cranberry (Vaccinium macrocarpon Ait.) terminal bud freezing stress resistance was assessed by nonlinear regression utilizing relative scoring of the post-thaw bud growth and development based on defined bud stages 2 weeks following controlled freezing tests. Bud stages tested were chosen based on a phenology profile from each sampling date throughout the spring season. Previous year (overwintering) leaf freezing stress resistance was evaluated after both 2 days (injury) and 2 weeks (survival). The Gompertz function with a bootstrapping method was used to estimate the tissues' relative freezing stress resistance as the LT50. Bud injury levels (LT50) were expressed as the temperatures at which the mean potential regrowth capability was impaired by 50%, as compared with the unfrozen controls. In leaves, the LT50 is the temperature at which 50% injury (2-day evaluation) or survival (2-week evaluation) was modeled to occur. Dramatic changes in terminal bud relative freezing stress resistance occurred both within and between the tight and swollen bud stages. These results clearly show that seasonal changes in freezing stress resistance do not necessarily parallel changes in crop phenology and bud development. These results indicate that some physiological, biochemical, or fine anatomical changes may explain the seasonal loss in hardiness within a visual bud stage. Previous year leaves may possess the ability to recover from freeze-induced injury, as leaf survival was found to be the most reliable indicator of cranberry leaf hardiness. Major shifts in phenology and bud and leaf hardiness coincided with the rise of minimum canopy-level air temperatures to above freezing. The nonlinear regression technique utilized made it possible to estimate LT50 with data points comprising half or more of the sigmoidal dose response curve. Our study provides precise and quantitative estimates of the cold hardiness changes in cranberry terminal buds and leaves in spring. From precise estimates we were able to define critical temperatures for the impairment of cranberry bud growth. This is the first systematic study of cranberry terminal bud cold hardiness and spring bud development in relation to changes in the soil and air temperatures under natural conditions. Our study shows that regrowth assessment of the cranberry upright inherently describes the composite effects of freezing stress on plant health.
CITATION STYLE
Workmaster, B. A. A., & Palta, J. P. (2006). Shifts in bud and leaf hardiness during spring growth and development of the cranberry upright: Regrowth potential as an indicator of hardiness. Journal of the American Society for Horticultural Science, 131(3), 327–337. https://doi.org/10.21273/jashs.131.3.327
Mendeley helps you to discover research relevant for your work.