Neuroimaging has become a powerful way of studying in vivo brain function and structure. The aim here is to comprehensively review Reid's fMRI study which is the first to use a multiple case approach to investigate individual differences among 18 participants with dyslexia (DPs) and 16 control participants (CPs) and to directly test the predictions of the main dyslexia theories on reading deficit. The results show that the neural correlates of reading deficit for all DPs (except one) are consistent with more than one theory, supporting a multiple deficit model. Striking individual differences between DPs were found; even if the neural correlates of reading deficit in two DPs were consistent with the same theory, the affected brain areas could differ. To make progress, research on causes of reading deficit in dyslexia would need to (1) focus on the multiple deficit model, (2) use neuroimaging to test a further refined set of brain areas (including areas hypothesised by other dyslexia theories) in longitudinal designs, (3) control the effects of co-occurring neurodevelopmental disorders, (4) use high-field MRI (including diffusion techniques), multiband fMRI and MEG with optically pumped magnetometers, (5) progress imaging genetics and (6) pursue neuroimaging intergenerational transmission of brain circuity.
CITATION STYLE
A. Reid, A. (2019). Neuroimaging Reveals Heterogeneous Neural Correlates of Reading Deficit in Individuals with Dyslexia Consistent with a Multiple Deficit Model. In Neuroimaging - Structure, Function and Mind. IntechOpen. https://doi.org/10.5772/intechopen.80677
Mendeley helps you to discover research relevant for your work.