DataPrep.EDA: Task-Centric Exploratory Data Analysis for Statistical Modeling in Python

24Citations
Citations of this article
87Readers
Mendeley users who have this article in their library.

Abstract

Exploratory Data Analysis (EDA) is a crucial step in any data science project. However, existing Python libraries fall short in supporting data scientists to complete common EDA tasks for statistical modeling. Their API design is either too low level, which is optimized for plotting rather than EDA, or too high level, which is hard to specify more fine-grained EDA tasks. In response, we propose DataPrep.EDA, a novel task-centric EDA system in Python. DataPrep.EDA allows data scientists to declaratively specify a wide range of EDA tasks in different granularity with a single function call. We identify a number of challenges to implement DataPrep.EDA, and propose effective solutions to improve the scalability, usability, customizability of the system. In particular, we discuss some lessons learned from using Dask to build the data processing pipelines for EDA tasks and describe our approaches to accelerate the pipelines. We conduct extensive experiments to compare DataPrep.EDA with Pandas-profiling, the state-of-the-art EDA system in Python. The experiments show that DataPrep.EDA significantly outperforms Pandas-profiling in terms of both speed and user experience. DataPrep.EDA is open-sourced as an EDA component of DataPrep: https://github.com/sfu-db/dataprep.

Cite

CITATION STYLE

APA

Peng, J., Wu, W., Lockhart, B., Bian, S., Yan, J. N., Xu, L., … Wang, J. (2021). DataPrep.EDA: Task-Centric Exploratory Data Analysis for Statistical Modeling in Python. In Proceedings of the ACM SIGMOD International Conference on Management of Data (pp. 2271–2280). Association for Computing Machinery. https://doi.org/10.1145/3448016.3457330

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free