Effects of IL-33/ST2 pathway in acute inflammation on tissue damage, Antioxidative parameters, Magnesium concentration and cytokines profile

20Citations
Citations of this article
28Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Aim: The aim of this study was to examine the role of IL-33/ST2 pathway in a pathogenesis of acute inflammation and its effects on tissue damage, antioxidative capacity, magnesium concentration and cytokine profile in acutely inflamed tissue. Material and methods: Male mice were randomly divided in four groups: wild-type control group (WT-C), ST2 knockout control group (KO-C), wild-type inflammatory group (WT-I), and ST2 knockout inflammatory group (KO-I). Acute inflammation was induced in WT-I and KO-I by intramuscular injection of turpentine oil, while mice in WT-C and KO-C were treated with saline. After 12 h, animals were euthanized, and blood was collected for determination of creatine kinase (CK) and aspartate transaminase (AST) activity. The treated tissue was used for histopathological analysis, determination of volume density of inflammatory infiltrate (Vdii) and necrotic fiber (Vdnf), gene expression of interleukin (IL)-33, ST2, tumor necrosis factor alpha (TNF-alpha), IL-6, IL-12p35, and transforming growth factor beta (TGF-beta), concentration of magnesium (Mg), copper (Cu), selenium (Se), manganese (Mn) and reduced glutathione (GSH), and superoxide dismutase (SOD) and glutathione peroxidase (GPx) activity. Results: Presence of inflammatory infiltration and necrosis in the treated tissue was histopathologically confirmed in WT-I and KO-I. Vdii was significantly higher in WT-I when compared to KO-I, whereas Vdnf did not significantly differ between WT-I and KO-I. CK and AST significantly increased in both inflammatory groups when compared to corresponding control groups. However, the values of CK and AST were significantly higher in WT-I than in KO-I. Mg in the treated tissue was significantly lower in WT-I in comparison to WT-C and KO-I, while there was no significant difference between KO-C and KO-I. There was no significant difference in Cu, Se, and Mn in the treated tissue between WT-C, KO-C, WT-I and KO-I. Gene expression of IL-33 in the treated tissue increased in both inflammatory groups when compared to the corresponding control groups, but it was significantly higher in KO-I than in WT-I. Gene expression of ST2 in the treated tissue was significantly higher in WT-I than in WT-C. Gene expression of TNF-alpha, IL-6, and IL-12p35 in the treated tissue was significantly higher in WT-I and KO-I than in the corresponding control groups, and IL-6 was significantly higher in KO-C than in WT-C. TGF-beta gene expression in the treated tissue was significantly higher in KO-I when compared to WT-I, while there was no difference between WT-C and KO-C. SOD activity decreased at the site of acute inflammation in both inflammatory groups, while the GPx activity increased. GSH in the treated tissue was significantly higher in KO-I than in KO-C or WT-I. Conclusion: The results of our study have indicated, to our knowledge for the first time, that IL-33/ST2 pathway plays a role in enhancing inflammation and tissue damage at the site of acute inflammation by affecting the concentration of magnesium and GSH, important for antioxidative capacity, as well as gene expression of anti-inflammatory cytokine TGF-beta.

Cite

CITATION STYLE

APA

Stankovic, M. S., Janjetovic, K., Velimirovic, M., Milenkovic, M., Stojkovic, T., Puskas, N., … Trbovich, A. M. (2016). Effects of IL-33/ST2 pathway in acute inflammation on tissue damage, Antioxidative parameters, Magnesium concentration and cytokines profile. Experimental and Molecular Pathology, 101(1), 31–37. https://doi.org/10.1016/j.yexmp.2016.05.012

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free