The story of a summit nucleus: hillslope boulders and their effect on erosional patterns and landscape morphology in the Chilean Coastal Cordillera

Citations of this article
Mendeley users who have this article in their library.
Get full text


While landscapes are broadly sculpted by tectonics and climate, on a catchment scale, sediment size can regulate hillslope denudation rates and thereby influence the location of topographic highs and valleys. In this work, we used in situ 10Be cosmogenic radionuclide analysis to measure the denudation rates of bedrock, boulders, and soil in three granitic landscapes with different climates in Chile. We hypothesize that bedrock and boulders affect differential denudation by denuding more slowly than the surrounding soil; the null hypothesis is that no difference exists between soil and boulder or bedrock denudation rates. To evaluate denudation rates, we present a simple model that assesses differential denudation of boulders and the surrounding soil by evaluating boulder protrusion height against a two-stage erosion model and measured 10Be concentrations of boulder tops. We found that hillslope bedrock and boulders consistently denude more slowly than soil in two out of three of our field sites, which have a humid and a semi-arid climate: denudation rates range from g 1/45 to 15ĝmĝMyr-1 for bedrock and boulders and from g 1/48 to 20ĝmĝMyr-1 for soil. Furthermore, across a bedrock ridge at the humid site, denudation rates increase with increasing fracture density. At our lower-sloping field sites, boulders and bedrock appear to be similarly immobile based on similar 10Be concentrations. However, in the site with a Mediterranean climate, steeper slopes allow for higher denudation rates for both soil and boulders (g 1/440-140ĝmĝMyr-1), while the bedrock denudation rate remains low (g 1/422ĝmĝMyr-1). Our findings suggest that unfractured bedrock patches and large hillslope boulders affect landscape morphology by inducing differential denudation in lower-sloping landscapes. When occurring long enough, such differential denudation should lead to topographic highs and lows controlled by bedrock exposure and hillslope sediment size, which are both a function of fracture density. We further examined our field sites for fracture control on landscape morphology by comparing fracture, fault, and stream orientations, with the hypothesis that bedrock fracturing leaves bedrock more susceptible to denudation. Similar orientations of fractures, faults, and streams further support the idea that tectonically induced bedrock fracturing guides fluvial incision and accelerates denudation by reducing hillslope sediment size.




Lodes, E., Scherler, D., Van Dongen, R., & Wittmann, H. (2023). The story of a summit nucleus: hillslope boulders and their effect on erosional patterns and landscape morphology in the Chilean Coastal Cordillera. Earth Surface Dynamics, 11(2), 305–324.

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free