Estimation and verification of hybrid heart models for personalised medical and wearable devices

13Citations
Citations of this article
22Readers
Mendeley users who have this article in their library.
Get full text

Abstract

We are witnessing a huge growth in popularity of wearable and implantable devices equipped with sensors that are capable of monitoring a range of physiological processes and communicating the data to smartphones or to medical monitoring devices. Applications include not only medical diagnosis and treatment, but also biometric identification and authentication systems. An important requirement is personalisation of the devices, namely, their ability to adapt to the physiology of the human wearer and to faithfully reproduce the characteristics in real-time for the purposes of authentication or optimisation of medical therapies. In view of the complexity of the embedded software that controls such devices, model-based frameworks have been advocated for their design, development, verification and testing. In this paper, we focus on applications that exploit the unique characteristics of the heart rhythm. We introduce a hybrid automata model of the electrical conduction system of a human heart, adapted from Lian et al. [8], and present a framework for the estimation of personalised parameters, including the generation of synthetic ECGs from the model. We demonstrate the usefulness of the framework on two applications, ensuring safety of a pacemaker against a personalised heart model and ECG-based user authentication.

Cite

CITATION STYLE

APA

Barbot, B., Kwiatkowska, M., Mereacre, A., & Paoletti, N. (2015). Estimation and verification of hybrid heart models for personalised medical and wearable devices. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) (Vol. 9308, pp. 3–7). Springer Verlag. https://doi.org/10.1007/978-3-319-23401-4_1

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free