Algebraic mapping-class groups of orientable surfaces with boundaries

6Citations
Citations of this article
3Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Let Sg,b,p denote a surface which is connected, orientable, has genus g, has b boundary components, and has p punctures. Let Σg,b,p denote the fundamental group of Sg,b,p. We define the algebraic mapping-class group of Sg,b,p, denoted by Outg,b,p, and observe that topologists have shown that Outg,b,p is naturally isomorphic to the topological mapping-class group of Sg,b,p. We study the algebraic version (formula presented) of Mess’s exact sequence that arises from filling in the interior of the (b + 1)st boundary component of Sg,b+1,p. Here Outg,b⊥1,p is the subgroup of index b + 1 in Outg,b+1,p that fixes the (b + 1)st boundary component. If (g, b, p) is (0, 0, 0) or (0, 0, 1), then \overset{\lower0.5em\hbox{\smash{\scriptscriptstyle\smile}}}{\Sigma } _{g,b,p} is trivial. If (g, b, p) is (0, 0, 2) or (1, 0, 0), then \overset{\lower0.5em\hbox{\smash{\scriptscriptstyle\smile}}}{\Sigma } _{g,b,p} is infinite cyclic. In all other cases, \overset{\lower0.5em\hbox{\smash{\scriptscriptstyle\smile}}}{\Sigma } _{g,b,p} is the fundamental group of the unit-tangent bundle of a suitably metrized Sg,b,p, and, hence, \overset{\lower0.5em\hbox{\smash{\scriptscriptstyle\smile}}}{\Sigma } _{g,b,p} is an extension of an infinite cyclic, central subgroup by Σg,b,p. We give a description of the conjugation action of Outg,b⊥1,p on \overset{\lower0.5em\hbox{\smash{\scriptscriptstyle\smile}}}{\Sigma } _{g,b,p} in terms of the following three ingredients: an easily-defined action of Outg,b⊥1,p on Σg,b+1,p; the natural homomorphism Σg,b+1,p → \overset{\lower0.5em\hbox{\smash{\scriptscriptstyle\smile}}}{\Sigma } _{g,b,p}; and, a twisting-number map Σg,b+1,p → ℤ that we define. The work of many authors has produced aesthetic presentations of the orientation-preserving mapping-class groups Outg,b,p+ with b+p ≤ 1, using the DLH generators. Within the program of giving algebraic proofs to algebraic results, we apply our machinery to give an algebraic proof of a relatively small part of this work, namely that the kernel \overset{\lower0.5em\hbox{\smash{\scriptscriptstyle\smile}}}{\Sigma } _{g,0,0} of the map Out_{g,1,0}^ + \to Out_{g,0,0} is the normal closure in Out g,1,0+ of Matsumoto’s A-D word (in the DLH generators). From the algebraic viewpoint, Outg,1,0 is the group of those automorphisms of a rank-2g free group which fix or invert a given genus g surface relator, Outg,0,0 is the group of outer automorphisms of the genus g surface group, and \overset{\lower0.5em\hbox{\smash{\scriptscriptstyle\smile}}}{\Sigma } _{g,0,0} is the kernel of the natural map between these groups. What we study are presentations for \overset{\lower0.5em\hbox{\smash{\scriptscriptstyle\smile}}}{\Sigma } _{g,0,0}, both as a group and as an Outg,1,0-group, and related topics.

Cite

CITATION STYLE

APA

Dicks, W., & Formanek, E. (2005). Algebraic mapping-class groups of orientable surfaces with boundaries. In Progress in Mathematics (Vol. 248, pp. 57–116). Springer Basel. https://doi.org/10.1007/3-7643-7447-0_4

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free