Due to the large amount of energy consumed in buildings, building energy savings has attracted more and more attention recently. The total energy consumed during building operations is determined by the building energy efficiency and the total demand. On the one hand, though most existing studies focus on improving building energy efficiency, there are limits. On the other hand, the demand grows fast and without limit. Therefore it is important to coordinate the supply and demand in buildings. We consider this important problem in this paper and make the following major contributions. First, the concept of average price of electricity (APE) is defined to measure the average generation cost of electricity using multiple devices. Second, a comfort model of occupant is developed to capture the tradeoff between thermal comfort and cost. Human building interaction allows the user to adjust their temperature set ranges according to the APE in real time. Third, an iterative solution method is developed to solve the supply demand coordination optimization problem. Numerical examples show that significant energy saving is possible through exploring the soft comfort requirement of the occupants, and the iterative method achieves a solution which is close to that of the centralized method, but in a much faster way. We hope this work brings insight to building energy saving in general.
CITATION STYLE
Xu, Z., Jia, Q. S., & Guan, X. (2015). Supply Demand Coordination for Building Energy Saving: Explore the Soft Comfort. IEEE Transactions on Automation Science and Engineering, 12(2), 656–665. https://doi.org/10.1109/TASE.2014.2306964
Mendeley helps you to discover research relevant for your work.