Spectral properties and the accuracy of mean-field approaches for epidemics on correlated power-law networks

27Citations
Citations of this article
28Readers
Mendeley users who have this article in their library.

Abstract

We present a comparison between stochastic simulations and mean-field theories for the epidemic threshold of the susceptible-infected-susceptible model on correlated networks (both assortative and disassortative) with a power-law degree distribution P(k)∼k-γ. We confirm the vanishing of the threshold regardless of the correlation pattern and the degree exponent γ. Thresholds determined numerically are compared with quenched mean-field (QMF) and pair quenched mean-field (PQMF) theories. Correlations do not change the overall picture: The QMF and PQMF theories provide estimates that are asymptotically correct for large sizes for γ<5/2, while they only capture the vanishing of the threshold for γ>5/2, failing to reproduce quantitatively how this occurs. For a given size, PQMF theory is more accurate. We relate the variations in the accuracy of QMF and PQMF predictions with changes in the spectral properties (spectral gap and localization) of standard and modified adjacency matrices, which rule the epidemic prevalence near the transition point, depending on the theoretical framework. We also show that, for γ<5/2, while QMF theory provides an estimate of the epidemic threshold that is asymptotically exact, it fails to reproduce the singularity of the prevalence around the transition.

Cite

CITATION STYLE

APA

Silva, D. H., Ferreira, S. C., Cota, W., Pastor-Satorras, R., & Castellano, C. (2019). Spectral properties and the accuracy of mean-field approaches for epidemics on correlated power-law networks. Physical Review Research, 1(3). https://doi.org/10.1103/PhysRevResearch.1.033024

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free