Heparin-binding protein is important for vascular leak in sepsis

  • Bentzer P
  • Fisher J
  • Kong H
  • et al.
N/ACitations
Citations of this article
36Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Elevated plasma levels of heparin-binding protein (HBP) are associated with risk of organ dysfunction and mortality in sepsis, but little is known about causality and mechanisms of action of HBP. The objective of the present study was to test the hypothesis that HBP is a key mediator of the increased endothelial permeability observed in sepsis and to test potential treatments that inhibit HBP-induced increases in permeability. Association between HBP at admission with clinical signs of increased permeability was investigated in 341 patients with septic shock. Mechanisms of action and potential treatment strategies were investigated in cultured human endothelial cells and in mice. Following adjustment for comorbidities and Acute Physiology and Chronic Health Evaluation (APACHE) II, plasma HBP concentrations were weakly associated with fluid overload during the first 4 days of septic shock and the degree of hypoxemia (PaO2/FiO2) as measures of increased systemic and lung permeability, respectively. In mice, intravenous injection of recombinant human HBP induced a lung injury similar to that observed after lipopolysaccharide injection. HBP increased permeability of vascular endothelial cell monolayers in vitro, and enzymatic removal of luminal cell surface glycosaminoglycans (GAGs) using heparinase III and chondroitinase ABC abolished this effect. Similarly, unfractionated heparins and low molecular weight heparins counteracted permeability increased by HBP in vitro. Intracellular, selective inhibition of protein kinase C (PKC) and Rho-kinase pathways reversed HBP-mediated permeability effects. HBP is a potential mediator of sepsis-induced acute lung injury through enhanced endothelial permeability. HBP increases permeability through an interaction with luminal GAGs and activation of the PKC and Rho-kinase pathways. Heparins are potential inhibitors of HBP-induced increases in permeability.

Cite

CITATION STYLE

APA

Bentzer, P., Fisher, J., Kong, H. J., Mörgelin, M., Boyd, J. H., Walley, K. R., … Linder, A. (2016). Heparin-binding protein is important for vascular leak in sepsis. Intensive Care Medicine Experimental, 4(1). https://doi.org/10.1186/s40635-016-0104-3

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free