Altered Expression of the Cell Cycle Regulatory Molecules pRb, p53 and MDM2 Exert a Synergetic Effect on Tumor Growth and Chromosomal Instability in Non-small Cell Lung Carcinomas (NSCLCs)

42Citations
Citations of this article
14Readers
Mendeley users who have this article in their library.

Abstract

Background: Recent in vitro studies provide evidence that the cell cycle molecules pRb, p53 and MDM2 form a tightly regulated protein network. In this study, we examined the relationship of this protein network in a series of non-small cell lung carcinomas (NSCLCs), with the kinetic parameters, including proliferative activity or proliferation index (PI) and apoptotic index (AI), and ploidy status of the tumors. Material and Methods: A total of 87 NSCLCs were examined using immunohistochemical and molecular methods in order to estimate the status of the pRb-p53-MDM2 network. The kinetic parameters and the ploidy status of the tumors were assessed by in situ assays. The possible associations between alterations of the network, kinetic parameters and ploidy status of the carcinomas were assessed with a series of statistical methods. Results: Aberrant expression of pRb (Ab) and overexpression of p53 (P) and MDM2 (P) proteins were observed in 39%, 57%, and 68% of the carcinomas, respectively. The comprehensive analysis revealed that concurrent alterations in all three cell cycle regulatory molecules were the most frequent pattern, pRb(Ab)/p53(P)/MDM2(P); this “full abnormal” phenotype represented approximately 27% of the cases. This immunoprofile obtained the highest PI/AI value; whereas, the “normal” phenotype was the lowest one (p = 0.004). Furthermore, the pattern pRb(Ab)/p53(P)/MDM2(P) acquired the highest PI (p < 0.001) and lowest AI (p < 0.001) scores. Interestingly, the groups of carcinomas with impaired expression of one or two molecules attained PI/AI ratio values clustered in a narrow range placed in the middle of the scores exhibited by the “normal” and “full abnormal” phenotypes. These tumors had significantly lower AI, but similar PI values, compared with those noticed in the normal pattern. In addition, it was observed that the pRb(Ab)/p53(P)/MDM2(P) phenotype was also significantly associated with aneuploidy (p = 0.002) and a tendency was observed when the expression of two components was altered (p = 0.055). Conclusions: Our findings suggest that simultaneous deregulation of all members of the pRb-p53-MDM2 network confers an additive effect on tumor growth. The apoptotic pathway seems to be more susceptible to its defects than the cell proliferation machinery. The findings of the ploidy analysis, which are in parallel with those regarding the proliferative activity and the apoptotic rate study, further support the concept that these molecules constitute a tightly regulated network participating in cell cycle control and chromosomal stability.

References Powered by Scopus

Mutation and cancer: statistical study of retinoblastoma.

6090Citations
N/AReaders
Get full text

Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16(INK4a)

4271Citations
N/AReaders
Get full text

Mdm2 promotes the rapid degradation of p53

3961Citations
N/AReaders
Get full text

Cited by Powered by Scopus

Genomic portrait of resectable hepatocellular carcinomas: Implications of RB1 and FGF19 aberrations for patient stratification

333Citations
N/AReaders
Get full text

MDM2 and human malignancies: Expression, clinical pathology, prognostic markers, and implications for chemotherapy

236Citations
N/AReaders
Get full text

Overexpression of the replication licensing regulators hCdt1 and hCdc6 characterizes a subset of non-small-cell lung carcinomas: Synergistic effect with mutant p53 on tumor growth and chromosomal instability - Evidence of E2F-1 transcriptional control over hCdt1

154Citations
N/AReaders
Get full text

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Cite

CITATION STYLE

APA

Gorgoulis, V. G., Zacharatos, P., Kotsinas, A., Mariatos, G., Liloglou, T., Vogiatzi, T., … Kittas, C. (2000, March 1). Altered Expression of the Cell Cycle Regulatory Molecules pRb, p53 and MDM2 Exert a Synergetic Effect on Tumor Growth and Chromosomal Instability in Non-small Cell Lung Carcinomas (NSCLCs). Molecular Medicine. BioMed Central Ltd. https://doi.org/10.1007/BF03402115

Readers' Seniority

Tooltip

Professor / Associate Prof. 2

40%

Researcher 2

40%

Lecturer / Post doc 1

20%

Readers' Discipline

Tooltip

Medicine and Dentistry 4

57%

Agricultural and Biological Sciences 1

14%

Biochemistry, Genetics and Molecular Bi... 1

14%

Nursing and Health Professions 1

14%

Save time finding and organizing research with Mendeley

Sign up for free