Phase behaviour of self-assembled monolayers controlled by tuning physisorbed and chemisorbed states: A lattice-model view

12Citations
Citations of this article
14Readers
Mendeley users who have this article in their library.
Get full text

Abstract

The self-assembly of molecules on surfaces into 2D structures is important for the bottom-up fabrication of functional nanomaterials, and the self-assembled structure depends on the interplay between molecule-molecule interactions and molecule-surface interactions. Halogenated benzene derivatives on platinum have been shown to have two distinct adsorption states: a physisorbed state and a chemisorbed state, and the interplay between the two can be expected to have a profound effect on the self-assembly and phase behaviour of these systems. We developed a lattice model that explicitly includes both adsorption states, with representative interactions parameterised using density functional theory calculations. This model was used in Monte Carlo simulations to investigate pattern formation of hexahalogenated benzene molecules on the platinum surface. Molecules that prefer the physisorbed state were found to self-assemble with ease, depending on the interactions between physisorbed molecules. In contrast, molecules that preferentially chemisorb tend to get arrested in disordered phases. However, changing the interactions between chemisorbed and physisorbed molecules affects the phase behaviour. We propose functionalising molecules in order to tune their adsorption states, as an innovative way to control monolayer structure, leading to a promising avenue for directed assembly of novel 2D structures.

Cite

CITATION STYLE

APA

Fortuna, S., Cheung, D. L., & Johnston, K. (2016). Phase behaviour of self-assembled monolayers controlled by tuning physisorbed and chemisorbed states: A lattice-model view. Journal of Chemical Physics, 144(13). https://doi.org/10.1063/1.4944936

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free