Triple-cation perovskite solar cells fabricated by a hybrid PVD/blade coating process using green solvents

23Citations
Citations of this article
73Readers
Mendeley users who have this article in their library.

Abstract

The scalability of highly efficient organic-inorganic perovskite solar cells (PSCs) is one of the major challenges of solar module manufacturing. Various scalable methods have been explored to strive for uniform perovskite films of high crystal quality on large-area substrates, but each of these methods has individual limitations on the potential of successful commercialization of perovskite photovoltaics. Here, we report a fully scalable hybrid process, which combines vapor- and solution-based techniques to deposit high quality uniform perovskite films on large-area substrates. This two-step process does not use toxic solvents, and it further allows easy implementation of passivation strategies and additives. We fabricate PSCs based on this process and use blade coating to deposit a SnO2 electron transporting layer and Spiro-OMeTAD hole transporting layer without halogenated solvents in ambient air. The fabricated PSCs have achieved open-circuit voltage up to 1.16 V and power conversion efficiency of 18.7% with good uniformity on 5 cm × 5 cm substrates.

Cite

CITATION STYLE

APA

Siegrist, S., Yang, S. C., Gilshtein, E., Sun, X., Tiwari, A. N., & Fu, F. (2021). Triple-cation perovskite solar cells fabricated by a hybrid PVD/blade coating process using green solvents. Journal of Materials Chemistry A, 9(47), 26680–26687. https://doi.org/10.1039/d1ta07579a

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free