Difluoromethane (HFC-32; DFM) is compared to acetylene and methyl fluoride as an inhibitor of methanotrophy in cultures and soils. DFM was found to be a reversible inhibitor of CH4 oxidation by Methylococcus capsulatus (Bath). Consumption of CH4 in soil was blocked by additions of low levels of DFM (0.03 kPa), and this inhibition was reversed by DFM removal. Although a small quantity of DFM was consumed during these incubations, its remaining concentration was sufficiently elevated to sustain inhibition. Methanogenesis in anaerobic soil slurries, including acetoclastic methanogenesis, was unaffected by levels of DFM which inhibit methanotrophy. Low levels of DFM (0.03 kPa) also inhibited nitrification and N2O production by soils. DFM is proposed as an improved inhibitor of CH4 oxidation over acetylene and/or methyl fluoride on the basis of its reversibility, its efficacy at low concentrations, its lack of inhibition of methanogenesis, and its low cost.
CITATION STYLE
Miller, L. G., Sasson, C., & Oremland, R. S. (1998). Difluoromethane, a new and improved inhibitor of methanotrophy. Applied and Environmental Microbiology, 64(11), 4357–4362. https://doi.org/10.1128/aem.64.11.4357-4362.1998
Mendeley helps you to discover research relevant for your work.