The mechanical phenotypic plasticity of melanoma cell: an emerging driver of therapy cross-resistance

19Citations
Citations of this article
46Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Advanced cutaneous melanoma is the deadliest form of skin cancer and one of the most aggressive human cancers. Targeted therapies (TT) against BRAF mutated melanoma and immune checkpoints blockade therapies (ICB) have been a breakthrough in the treatment of metastatic melanoma. However, therapy-driven resistance remains a major hurdle in the clinical management of the metastatic disease. Besides shaping the tumor microenvironment, current treatments impact transition states to promote melanoma cell phenotypic plasticity and intratumor heterogeneity, which compromise treatment efficacy and clinical outcomes. In this context, mesenchymal-like dedifferentiated melanoma cells exhibit a remarkable ability to autonomously assemble their own extracellular matrix (ECM) and to biomechanically adapt in response to therapeutic insults, thereby fueling tumor relapse. Here, we review recent studies that highlight mechanical phenotypic plasticity of melanoma cells as a hallmark of adaptive and non-genetic resistance to treatment and emerging driver in cross-resistance to TT and ICB. We also discuss how targeting BRAF-mutant dedifferentiated cells and ECM-based mechanotransduction pathways may overcome melanoma cross-resistance.

Cite

CITATION STYLE

APA

Diazzi, S., Tartare-Deckert, S., & Deckert, M. (2023, December 1). The mechanical phenotypic plasticity of melanoma cell: an emerging driver of therapy cross-resistance. Oncogenesis. Springer Nature. https://doi.org/10.1038/s41389-023-00452-8

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free