Most existing recursive neural network (RvNN) architectures utilize only the structure of parse trees, ignoring syntactic tags which are provided as by-products of parsing. We present a novel RvNN architecture that can provide dynamic compositionality by considering comprehensive syntactic information derived from both the structure and linguistic tags. Specifically, we introduce a structure-aware tag representation constructed by a separate tag-level tree-LSTM. With this, we can control the composition function of the existing word-level tree-LSTM by augmenting the representation as a supplementary input to the gate functions of the tree-LSTM. In extensive experiments, we show that models built upon the proposed architecture obtain superior or competitive performance on several sentence-level tasks such as sentiment analysis and natural language inference when compared against previous tree-structured models and other sophisticated neural models.
CITATION STYLE
Kim, T., Choi, J., Edmiston, D., Bae, S., & Lee, S. G. (2019). Dynamic compositionality in recursive neural networks with structure-aware tag representations. In 33rd AAAI Conference on Artificial Intelligence, AAAI 2019, 31st Innovative Applications of Artificial Intelligence Conference, IAAI 2019 and the 9th AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2019 (pp. 6594–6601). AAAI Press. https://doi.org/10.1609/aaai.v33i01.33016594
Mendeley helps you to discover research relevant for your work.